Synchronization and spindle oscillation in noisy integrate-and-fire-or-burst neurons with inhibitory coupling
نویسندگان
چکیده
We propose another integrate-and-fire model as a single neuron model. We study a globally coupled noisy integrate-and-fire model with inhibitory interaction using the Fokker-Planck equation and the Langevin equation, and find a reentrant transition of oscillatory states. Intermittent time evolutions of neuron firing are found in strongly inhibited systems. We propose another integrate-and-fire-or-burst model including the dynamics of the low-threshold Ca current based on the new integrate-and-fire model. We study a globally coupled noisy integrate-and-fire-or-burst model with inhibitory interaction using the Fokker-Planck equation, and find bistability of the tonic mode and burst mode. Doubly periodic oscillation appears in a coupled system of two neuron assemblies, which is similar to the spindle oscillation in thalamic cells.
منابع مشابه
Neuronal circuitry of thalamocortical epilepsy and mechanisms of antiabsence drug action.
Powerful mechanisms exist within the thalamus that lead to the promotion of synchronous and phasic 3 Hz neuronal activity. These mechanisms include robust burst-firing capability of thalamic neurons, recurrent excitatory and inhibitory synaptic connectivity, and long-lasting and powerful inhibitory synaptic responses arising from activity in thalamic reticular neurons and mediated by gamma-amin...
متن کاملInterplay of Intrinsic and Synaptic Conductances in the Generation of High-Frequency Oscillations in Interneuronal Networks with Irregular Spiking
High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the ...
متن کاملSynchronization of an excitatory integrate-and-fire neural network.
In this paper, we study the influence of the coupling strength on the synchronization behavior of a population of leaky integrate-and-fire neurons that is self-excitatory with a population density approach. Each neuron of the population is assumed to be stochastically driven by an independent Poisson spike train and the synaptic interaction between neurons is modeled by a potential jump at the ...
متن کاملContributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
During fast oscillations in the local field potential (40-100 Hz gamma, 100-200 Hz sharp-wave ripples) single cortical neurons typically fire irregularly at rates that are much lower than the oscillation frequency. Recent computational studies have provided a mathematical description of such fast oscillations, using the leaky integrate-and-fire (LIF) neuron model. Here, we extend this theoretic...
متن کاملPropagation of spindle waves in a thalamic slice model.
1. We study the propagation and dynamics of spindle waves in thalamic slices by developing and analyzing a model of reciprocally coupled populations of excitatory thalamocortical (TC) neurons and inhibitory thalamic reticular (RE) neurons. 2. Each TC neuron has three intrinsic ionic currents: a low-threshold T-type Ca+2 current (ICa-T), a hyperpolarization-activated cation ("sag") current (Ih) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005